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LIQUID CRYSTALS, 1995, VOL. 19, No. 2, 269-276 

Order parameter dependence of the nematic liquid crystal 
anchoring energy: a numerical approach 

by ANGEL0 D1 GARB0 and MAURIZIO NOBILI* 
Dipartimento di Fisica dell’Universit8 di Pisa, Piazza Torricelli 2, 56126 Pisa, Italy 

(Received 22 November 1994; accepted I 7  February 1995) 

We study the influence of the surface director disorientation and of the sub-surface director 
distortion on the surface order parameter and on the anchoring torque of a nematic liquid crystal 
(NLC). The problem is treated in the framework of the Landau-de Gennes theory with an 
anchoring energy of the form Tr [(Q,  - Qo,,)~], where Ql, is the NLC quadrupolar order parameter 
and Qo,, a quadrupolar surface field. In this way both fusion mechanisms are considered: the bulk 
one consisting of the decrease of the order parameter induced by distortion and the surface one 
consisting of the decrease of the order induced by the surface disorientation. For a weak 
anchoring we find, analytically, that the surjizce mechanism is more important than the bulk 
mechanism. For a strong anchoring we find, numerically, that the maximum surface order 
decrease saturates at a value of &/2, where Se is the bulk order parameter. New higher order 
harmonics in a h  sin (2n6) (n > 1)  appear in the anchoring torque (6 is the angle between the actual 
surface director and the easy axis). 

1. Introduction 
The nematic liquid crystal (NLC) can be oriented by 

solid substrates along well-defined directions no, called 
easy directions. The surface interaction energy is de- 
scribed phenomenologically by a function W called 
anchoring energy. Usually the nematic scalar order 
parameter S is assumed uniform. In this hypothesis the 
anchoring energy for a monostable anchoring is written in 
the Rapini-Papoular (RP) form [I] 

(1) WRP= ---(n-noj, 
2 L  

where K is one elastic constant of the NLC and L is the 
anchoring extrapolation length. This form reproduces very 
well the anchoring measurements for weak anchoring 
L 9 5 ( 5  is the nematic-isotropic coherence length) [2]. 
For stronger anchoring, deviations in (n - no)4 have been 
reported [3-51. Recently it has been shown that these 
departures from the RP anchoring form could be explained 
by a decrease of the surface order parameter induced by 
the surface director disorientation [ 5 ] .  In [5 ] ,  the surface 
is supposed to orient the NLC by a surface quadrupolar 
field given by: Qo, = (3/2)So(nn,no, - (Zy/3)j, where Sn is 
the preferred surface ordering when n = no and I is the 
unity tensor. In the hypothesis of no surface biaxial order 
and uniform density, the anchoring energy was written as 

(2) 
Win equation (2) is minimum when QIJ = Qo,, (n = no and 

* Author for correspondence. 

1K 2 

w = :A Tr t ( Q t J  - Qo,)*I. 

S = SO), i.e. when the surface nematic quadrupolar field is 
along the direction of the surface quadrupolar field. When 
SO # SB (SB is the bulk order parameter in null external 
field), in the absence of surface disorientation, the surface 
order results from the balance between a bulk effect which 
tends to induce SS = SB, by continuity from the bulk, and 
a surface effect which tends to keep SS = SO. The surface 
order parameter is SS # SB and an S spatial variation is 
present [6]. On the contrary, if So = S g ,  the order parameter 
is uniform in the bulk in absence of any disorientation. The 
main result of the model in [5] is that even if SO = SB, a 
disorientation from the surface field direction no results in 
a disordering of the nematic liquid crystal at the surface, 
because of the competition between the surface field and 
the nematic ordering mean field. The surface order 
parameter SS is different from the bulk order parameter SB, 
and therefore there exists some region close to the surface 
where S varies. This surjiuce source of S spatial variations 
is a new mechanism totally different from the bulk 
mechanism proposed in [7].  In the latter case, an S spatial 
variation is generated by a strong distortion close to the 
surface. Anyway, these two mechanisms contribute to the 
S spatial variations and their relative importance is so far 
unknown. In [5], the influence of these S spatial variations 
on the polar torque was not analysed. 

In this paper, we treat analytically the limit of weak 
deviations from the RP by considering both the surfuce 
and bulk sources of the order parameter variations. The 
relative importance of these two mechanisms is analysed. 
Moreover, the limit of weak deviations from the RP 
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270 A. Di Garbo and M. Nobili 

Figure 1 .  Schematic view of the nematic liquid crystal cell and 
of the NLC distortion. 

anchoring form is not always experimentally true as one 
can see in 151. For strong deviations from the RP, an 
analytical approach is not possible and the problem must 
be solved numerically. From the Landau-de Gennes free 
energy, we derive the two coupled equations of the order 
parameter and the director orientation angle, and solve 
these equations numerically. 

We study the unidimensional case where all the physical 
quantities depend only on the distance z from the surface 
(2 is the surface normal). We call 8 the angle between the 
director and the z axis (see figure 1). The surface is 
supposed to orient the NLC molecules along one easy 
direction no (80 = n/2) in the plane of the surface, with an 
anchoring energy given by equation (2). The disorienting 
torque is given by an electrical field E perpendicular to the 
surface that orients the NLC molecules parallel to itself 
because of the dielectric anisotropy > 0 of the NLC. At 
the equilibrium, a distortion O(7) is created in the bulk and 
the angle 8s on the surface is different from the easy angle 
60. We want to remark that the angle 8s is the macroscopic 
director angle at the surface and not the extrapolated 
surface director angle from the bulk. Due to the coupling 
between 8s and SS in the anchoring energy (2) and that of 
8 and S in the bulk free energy, the order parameter is not 
uniform in the bulk and an S(z)  appears. The numerical 
problem is to find out the solution of a system of two 
non-linear second order differential equations with 
boundary conditions for O(z) and S(7). 

The plan of the paper is the following: in $ 2 we derive, 
by using the Landau-de Gennes free energy functional, the 
two coupled, second order non-linear equations for S(z)  
and 8(7) with the anchoring energy given by expression 
(2). In $ 3  we calculate analytically the first integral of the 
free energy functional and discuss the relative importance 
of the bulk and suflace fusion mechanisms. In the 
Appendix we give the detailed calculus of the first integral. 
In $ 4  we illustrate the numerical algorithm and discuss the 
numerical results, and finally in $ 5  we draw the 
conclusions. 

2. 
First of all let us express the coefficient A in front of W 

in equation ( 2 )  as a function of the anchoring extrapolation 
length L. To do this, we compare the expression of the 
torque for the two anchoring energies (1) and (2)  in the 
limit of small deviations with respect to the easy axis, 
under the hypothesis that the same parabolic expansion is 
valid for the two anchoring energies (1) and (2).  The 
generalized anchoring energy ( 2 )  can be developed a\ 

w ( s ~ ,  d s )  = $A[(s$ + S; - sss,(3 sin' Os - I )I .  ( 3 )  

Along the easy direction (0 ,  = 7r/2), the anchoring energy 
(3) writes W(&, 7d2) = (3/4)A(Ss - So)' and forA > 0 it is 
a minimum when SS = So. The general polar torque is the 
following 

Coupled S(z) and O(z) non-linear equations 

(4) 

where SS = Ss(8,) due to the SS - 8s coupling in the 
anchoring energy (3). When 8s is close to 7r/2 the polar 
anchoring torque can be approximated by 

For weak deviations of n from no (& = 7r/2), the RP 
anchoring energy ( I )  can be approximated as a parabola 
of expression 

2 

WRp = - K (ds - s)' = L1 - S; (8s - s) , (6) 2L 2L 

where S g  is the bulk order parameter and K corresponds 
to the relationship K = (9/2)L,S; [ 8 ] .  The RP polar torque 
writes as 

(7) 

By equating the expressions (7) and (S), we find the value 
of the coefficient A: 

s:, L ,  
SOSS(7d2) z. A =  

The surface order parameter along the easy direction 
Ss(7d2) is determined by the balance of the surface 
interactions which keep the order parameter at So and the 
bulk interactions which keep the order parameter to Sg. 
When So = SB, the surface order parameter along no is 
Ss(7d2) = Sg and the A expression (8) simplifies to 

L 
L '  

A=' 

In the following, we adopt this simplified assumption. 
The anchoring energy (3) and the polar torque (4) now 
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27 1 Numerical approach to nematic ordering 

1 

2L 
s;B(,= -(&) = - - SSSB sin (2&), (16a)  write as 

aw 9 L *  
aos 4 L 

SBSS sin (28s). - -_ - -_  

Let us consider a cell limited by two surfaces with the easy 
direction along the x axis and equal anchoring energy 
given by the expression (10a):  z is the normal to the 
surfaces and the NLC occupies the space included between 
z = d/2 and z = - d/2 (see figure 1 ) ,  where d is the cell 
thickness. An electric field of displacement vector D along 
the z axis is applied to the cell. The free energy density f, 
in one elastic constant approximation, is given by [8]  

1 D2 
f = ; L,SW + 2LIS2 + g(S) + - ___ ( 1  1) 8 ,  E,(S, 8) ’ 

where 4 and s mean the first derivatives of 8 and S with 
respect to z,  respectively. The first term in the r.h. of (1 1) 
represents the elastic distortion energy, the second term is 
the energy associated with an S gradient, the third term is 
the homogeneous part of the Landau-de Gennes free 
energy density given by 

g(S) = g(0) 1- +a(T- T*)S2 - +BS3 + $CS4, (12) 

(a, B, C are all positive coefficients) and finally the last 
term represents the energy associated with the electric field 
when a constant voltage is applied over the cell. E,,(S, 0) 
in ( 1  1 )  is the zz component of the dielectric tensor given 

( 1 3 )  

where and A&,, are the isotropic part and the anisotropy 
of the dielectric constant for a perfect nematic order 
(S = l ) ,  respectively. The functional to be minimized is the 
free energy density per unit of surface F given by 

by 

E,,(S, 6 )  = EI - +AE-S( 1 - 3 C O S ~  O ) ,  

d/2 

F = J  f d z + W ,  (14) 
- (aw 

where Wis the anchoring energy of the surface (10 (a)). By 
minimizing F in equation (14), we find the two bulk 
Euler-Lagrange equations 

and 

and 

Due to the cell symmetry, the expected solutions S(z) and 
O(z) are even z functions; thus the boundary conditions in 
z = dl2 can be substituted by the following conditions in 
2 = 0: 

and 

and the bulk equations can be solved only in the half of the 
cell - d / 2 S z l O .  The two second order differential 
equations (15 a) and (15 b),  with the four boundary 
conditions (16a) ,  (16b) ,  (17a)  and (17b) ,  will be 
integrated numerically in 5 4. 

3. 
In this section we calculate the first integral of the S(z) 

and O(z) equations (15 b )  and (15 a).  The functional f in 
equation ( 1  1 )  does not depend explicitly on z; thus it 
admits one first integral given by 

First integral of the S(z) and O(z) equations 

.af . a f  s 7  + 8- - f = co. as a8 

Hence, we find 

The left hand side of equation (19) is independent of z; thus 
knowing the constant Co and by calculating the left hand 
side of equation (19) in z = - d/2, where the boundary 
equations (16 a) and (16 b)  are valid, we find a relationship 
between SS and 8s. In this way we take into account both 
the surface and the bulk source of S variations and we can 
compare their relative importance. To make the calculus 
possible analytically, we adopt the hypothesis of small 
deviations of the order parameters all over the cell S(z) 
from the bulk value Ss. In this limit, the homogeneous free 
energy density g ( S )  in equation (12) can be approximated 
by a parabola centred in SB given by 

where the N-I coherence length 5 is given by 

with two boundary conditions in z = - dl2: By analogy with the case of a uniform order parameter, we 
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272 A. Di Garbo and M. Nobili 

can define an effective electric coherence length tE as 

where E, = A E ~ ~ S B ~  and we have defined a sort of effective 
electric field Eeff as 

With g ( S )  given from equation (20) and by writing the 
electric displacement %, in terms of l~ (22) and equation 
(23), the S bulk equation (15 b) and the first integral (1  9) 
become 

and 

(25) 

For a cell thickness d much larger than t E ,  we can 
approximate s and 8 in the centre of the cell ( z = O )  as 
$O)-O and 8(0)-0, and from equation (24) we can 
calculate the order parameter S(0) as 

(S(0) - SB)(&I + +A&maxS(O))  = SB - (EI + +AEmaxSB). 

(26) 

The equation (26) is of the second degree in S(0). In the 
limit under consideration of small S(z)  deviations from SS, 
S(0) is given by 

0' 

The order parameter S(0) far from the surface increases 
quadratically with the electric field amplitude ( a  1/& as 
experimentally tested [9]. By calculating the left hand side 
of equation (25) for z = O  with the same degree of 
approximation, we have for Co the following expression 

From the definition of 4~ in equation (22) and the Co 
expression (28), the first integral (25) writes 

(29) 
For calculating the first derivatives 8 and S in z = - dl2, 
we can exploit the relationships (1 6 a)  and ( 1  6 b), and thus 
we can find an equation which links 8s and SS given by 

- (SS - S,)2 - 

The full calculation is given in the Appendix; here we 
show just the final result. We find a surface order 
parameter SS(&) of the first order in SIL given by 

and a surface order decrease ASS(&) = SB - SS(&)  given 
by 

(32) 
3 5  
2 L  

A&(&) = SB - ~ COS2 8s. 

When BS = d 2 ,  we obtain ASs(d2) = 0 (i.e. SS = SB) as 
expected, due to the assumption So = SB. When 8s = 0 
(i.e. the surface director is perpendicular to the easy axis), 
we have the maximum decrease of the surface order 
parameter given by ASs(0) = S~(3/2)(t/L). This result i s  
exuctZy the same as that of [5]  obtained by neglecting the 
order parameter decrease induced by the distortion (bulk 
'fusion' mechanism). Thus we can conclude that in the 
limit of ( /L4  1, the bulk 'fusion' mechanism is less 
important than the surface fusion effect. By substituting 
the SS expression (3 1) in the anchoring polar torque (10 b), 
we find the identical expression of [5]:  

As sin (4&) 
2 4  

where As in (33) was assumed to ASS(O) /SB.  

4. Results 
For strong S(z) deviations from SB, the problem must be 

solved numerically. To solve the two second order 
differential equations ( 1 5  a )  and ( 1  5 b) with the four 
boundary conditions (16u), (16b), (17a) and (17 b), we 
have used a general purpose code (COLNEW), which 
solves mixed order systems with multipoint boundary 
conditions [lo]. According to [8], the numerical values 
of the coefficients L I ,  a, B, and C used in the calcula- 
tions, expressed in S.I. units, are the following: 
L I = 1.1 X 10- ' I ,  M = 1.83 X lo4, B = 3.28 X lo6 and 
C = 1-02 X 10'. The dielectric constants used are given by: 
R I =  10.13 and A~,,,=33.53 which correspond to the 
nematic compound 4-pentyl-4'cyanobiphenyl(5CB) [ 1 11. 
The chosen temperature and cell thickness are T = T* and 
d =  10-4m, respectively. From equations (12) and (21) 
we find the bulk order parameter SB =0-32 and the 
nematic-isotropic coherence length 5 = 40 A. 

In figures 2 ( a )  and 2 (b) are shown 8s and Ss versus D 
for (/L = 0.1, respectively. One can see that by increasing 
D above the Frkedericksz threshold Dth = 7.5 X lo4 C m - 
(Dth = (4n&~K)"~(n/d) ,  where K = (9/2)L IS; and 
E L  = EI - ( ~ / ~ ) A E , ~ ~ S B ) ,  the surface angle orients toward 
the electric field direction ( 8 s  = 0) and the surface order 
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Numerical approach to nematic ordering 273 

parameter decreases. On the contrary, the bulk order 
parameter increases, following equation (27). When the 
surface and bulk directors are oriented along the field, 
further increase in the field causes an increase of the bulk 
order parameter and, with it, of the surface order parameter 
( D z 0 - 9 X  1O8CmP2 in figure 2(b)). 

In figure 3 is shown the maximum surface order 
decrease As, when the applied electric field has completely 
disoriented the surface director (see figure 2 (a) and 2 (b)), 
as function of the ratio &L. The straight line represents the 

0.0 0.5 1.0 1.5 
D/(IO' c/m2) 

(b)  

Figure 2. (a) Bs versus D and (6) SS versus D for [ / L  = 0.1. The 
Frkdericksz threshold Dth = 7.5 X 104C ,-'is not visible 
in (a) due to the scale used for D. 

w 
Figure 3. Maximum decrease of the surface order normalized 

to the bulk order parameter As = AS(O)/SB versus the ratio 
</L . In the inset is represented a magnification of the lower 
left hand corner of the main figure. 

analytical result As=(3/2) ( t / L ) .  In the inset, we can 
observe that with As 5 0.05, the analytical expression 
reproduces well the numerical results. For stronger 
anchoring strengths, there is a saturation of the effects at 
a value of As = 1/2. 

In figure 4(a) and 4(b), the 3D plots of the order 
parameter S(z) as a function of z and D for r / L  = 10 (strong 
anchoring) and t / L  = 0.1 (weak anchoring) are shown, 
respectively. One can see that the characteristic variation 
in length of S(z) is about 4t = 160A for both curves. In 
figure 4(a),  by increasing D, S goes to the bulk values 
non-monotonically, first decreasing near the surface, 
and then increasing to the bulk value. The solid line in 
figure 5 represents the spatial derivative of 8 and the 
dashed line the order parameter S(z). The distortion 
behaves as a source of the order parameter decrease, and 
the surface order minimum is reached a little after the 
maximum distortion (in modulus). This behaviour is due 

(b) 

Figure 4. 3D plot of the order parameter S as function of z + d/2 
and D for (a) [/L = 10 and (b)  </L = 0-1. The dashed lines 
have been added to help the reader: in (a) they represent 
the function S(0,D) = SB and S(3 X 102A, D )  = SB, in 
(b) the v?lues of S(0, D )  = SB, S(0, D )  = S(Bs = 0) and 
S(3 X lo2 A, D )  = Sg. 
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274 A. Di Garbo and M. Nobili 

to the bulk fusion mechanism [7]. In figure 4(b), S(z) 
monotonically goes from the surface value SS, which is 
lower than S g  (dashed line) due to the surfiuce 'fusion' 
mechanism, to the bulk value larger than Sg (dashed line) 
due to the ordering effect of the electric field. As estimated 
in 5 3 for small l / L ,  the hulk fusion mechanism is weaker 
than the corresponding surJuce mechanism. 

0-0 7 - 0 . 3 5  

0.25 

0.20 

-1.5 0.15 

N 

Q) 
,a -1.0 
a, 

0 50 100 
(z +d/2)/A 

Figure 5. d@dz (-) and S(z)  (---) versus z+d /2  for 
(IL = 10 and L) = 4 X lO'"Cm-*. 

7 0.35 
'0.3 

SS 
.0.25 

10.2 
I 

j0.15 

Figure 6. 3D plot of Ss versus j lL and 0s. 

esldeg 

Figure 7. 3D plot of the polar torque d Wlatl, versus <lL and Os.  

In figure 6, the 3D plot of the surface order parameter 
Ss versus the surface polar angle 8s and the ratio @L is 
reported. Along the easy axis OS = 90", the order par- 
ameter is S, = 0.32. The &(&) curve for ( / L  = 1 does not 
follow the equation (32),  but saturates just after 45", at the 
value in 8s = 0. 

Figure 7 shows a 3D plot of the polar torque versus 8 s  
and @L. The polar torque is of the RP form for l/L < 1. 
By increasing the anchoring force, i.e. the ratio ( / L  ,higher 
and higher harmonics are included, as one can see on the 
curve for ( / L  = I .  

In figure 8(u-d), the polar torque versus the polar 
angle for four values of the extrapolation length from 
</L = 0.01 3 to l / L  = 1 are shown. The solid line represents 
the best fit with the expression a2 sin (28s) + 
a4 sin (40s) + a6 sin (60s) + ux (88s) + alo sin (100s). 

n 

"E \ 

2 0.5 
h 

Y 
a? 
c? s 
'0, 0.0 

n 

0 45 90 
8, Ideg 

(a) 

0 45 90 
8, Ideg 

(h )  

0 45 90 
0, Ideg 

( C )  
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0 45 90 
8, ldeg 

(d ) 

0 45 90 
8, ldeg 

( e )  

Figure 8. aW/a%s versus 0s for (a)  QL = 0-013, (b) </L = 0.1, 
(c) QL = 0-4, (d)  </L = 0.66, ( e )  g/L = 1. The solid lines 
represent the best fit with 8 W/& = a2 sin (28s) 
+ a4 sin (48s) + a6 sin (60s) + a8 sin (88,) + a10 Sin (108s). 

- I I , , . ,  I I 

4 L  
0.0 0.5 1 .o 

Figure 9. The amplitudes a2 (o), a4 (A), a6 (*), U S  (@I, a10 (0) 
versus EIL. In the inset is represented a magnification of part 
of the principal figure. 

Figure 9 shows the amplitudes a2, a4, a6, as, a10 versus 
the ratio @L. The amplitudes a2, as, alo are all positive, 
whereas the amplitudes a4, a8 are negative. 

5. Conclusions 
We have studied the influence of surface director 

disorientation and of sub-surface director distortion on the 
order parameter and on the anchoring torque, as recently 

proposed in [ 5 ] .  The surface disorientation is due to the 
disorienting effect of an external field. The problem is 
treated in the framework of the Landau-de Gennes theory 
with an anchoring energy of the form Tr [ ( Q ,  - Q0,)*], 
where Q, is the NLC quadrupolar order parameter and Qo0, 
a quadrupolar surface field. In this way both ‘fusion’ 
mechanisms are considered the bulk mechanism consist- 
ing of the decrease of the order parameter induced by 
distortion [7] and sugace mechanism consisting of the 
decrease of the order induced by the surface disorientation 

For weak anchoring, ( / L  < 1 ( c  is the nematic-isotropic 
coherence length, and L is the anchoring extrapolation 
length), by calculating analytically the first integral of the 
Landau-de Gennes free energy we find that the sugace 
mechanism is  more important than the bulk mechanism. 
We find a maximum surface order decrease 
As = (SB - Ss(0))/SB which follows a linear law in </L. 
The anchoring torque includes, besides the Rapini- 
Papoular term in sin (28s), a new term in sin (48s). 

For strong anchoring, @L = 1, the problem must be 
solved numerically. The numerical results confirm that a 
sub-syface order parameter decrease is produced by a 
strong sub-surface distortion. As no longer follows a linear 
law, but saturates at a value of As - 1/2. By increasing the 
ratio l / L :  new higher order harmonics in a2,sin(2n&) 
with n > 2 appear in the anchoring torque. The ampli- 
tudes a4 and a8 are negative, whereas a2, a6 and a10 are 
positive. 

[51. 

We acknowledge interesting discussions with S. Faetti 
and the Minister0 della Ricerca e dell’universith (Italy) 
and the Consiglio Nazionale delle Ricerche (Italy) for 
financial support. 

Appendix 
In $ 3 ,  we have obtained the expression (30) for the first 

integral of the free energy density functional (1 1). In this 
appendix, we show the detailed calculations that lead to 
the expression (32) for the surface order parameter 
decrease starting from equation (30). 

In the limit of SS = SH, the expression ( E I ! E ~ ~ ( S S ,  0,) - 1) 
in the last term of equation (30) writes 
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By substituting this term in (30) we find 

x ( 3  cos2 6)s - 1)*(& - SB)’] = 0. (A 2) 

The expression (A 2)  can be developed as a function of the 
small parameter 0 = @L . On the hypothesis that 

The last term in (A 4) is of the same order in p as the other 
terms only if the ratio UCE is developed at zero order in 0. 
From (A 3 ) ,  zero order in /3 implies S(7) = SB; thus the ratio 
LIEE is the same as that in the problem of splay-bend 
deformation with uniform S(z)  = Sg and isotropic elastic 

constants. From the definition of lE in equation (22) and 
E,ff in equation (23) we obtain 

By substituting UYE (A 5 )  in (A4) we find 

q =  -;cos2os (A 6 )  

and the correction, at the first order in L/5 ,  to the surface 
order parameter writes 

(A  7 )  
3 5  
2 I, Ass( 8s)  = SB - - COS2 0,. 

as in  equation (32). 

References 
[I]  RAPINI, A,,  and PAPOULAR, M., 1974, J.  Phys. Colloq., 30, 

c-4,  54. 
[2] FAHTI, S., NOBILI, M., and SCHIRONE, A., 1991, Liq. 

Crystals, 10, 95. 
[3] ROSENBLATT, C., 1984, J.  Phys. (Paris), 45, 1087. 
[4] YOKOYAMA, H., and VAN SPRANG, H. A., 1985, J .  uppl. 

Phys., 57, 4520. 
IS] NOBILI, M., and DURAND, G., 1992, Phys. Rev. A ,  46, 

R6 174. 
[6] BARBERO, G., BARBERI, R., and FERRERO, C., 1993, Molec. 

Muter., 3, 77. 
171 BARBERO, G., and DUIIAND, G., 1991. J.  Phys. II Franc<., 1,  

651. 
183 PRIESTLEY, E. B., WOJTOWICZ, P. J., and P r N G  SHEKG, 1974, 

Introductian to Liquid Crystals (Plenum Press), Chap. 1 0 ,  

[9] LEIJDIS, I., NOBILI, M., and DURAND, G., 1993, Phys. Rev. 
E, 48, 3818. 

[lo] ASCHER, U., CHRISTIANSEN, J., and RUSSEL, R. D., 1981, 
ACM Truns. Muth. Sojhvare, 7 ,  209. 

[ l  I ]  RATNA, B. R., and SHASHIDHAR, P., 1977, Molec. Cpstuls. 
liq. Crystals, 42, 113. 

p. 151-161. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


